Modeling Microarray Data: Interpreting and communicating the biological results
نویسندگان
چکیده
Various statistical models have been proposed for detecting differential gene expression in data from microarray experiments. Given such detection, we are usually interested in describing the differential expression patterns. Due to the large number of genes that are typically analysed in microarray experiments, possibly more than ten thousand, the tasks of interpretation and communication of all the corresponding statistical models pose a considerable challenge, except perhaps in the simplest experiment involving only two groups. A further challenge is to find methods to summarize the resulting models. These challenges increase with experimental complexity. Biologists often wish to sort genes into ‘classes’ with similar response profiles/patterns. So, in this paper we describe a likelihood approach for assigning genes to these different class patterns for data from a replicated experimental design. The number of potential patterns increases very quickly as the number of combinations in the experimental design increases. In a two group experimental design there are only three patterns required to describe the mean response: up, down and no difference. For a factorial design with three treatments there are 13 different patterns, and with four levels there are 75 potential patterns to be considered, and so on. The approach is applied to the identification of differential response patterns in gene expression from a microarray experiment using RNA extracted from the leaves of Arabidopsis thaliana plants. We compare patterns of response found using additive and multiplicative models. A multiplicative model is more commonly used in the statistical analysis of microarray data because of the variance stabilizing properties of the logarithmic function. Then the error structure of the model is taken to be log-Normal. On the other hand, for the additive model the gene expression value is modeled directly as being from a gamma distribution which successfully accounts for the constant coefficient of variation often observed. Appropriate visualization displays for microarray data are important as a way of communicating the patterns of response amongst the genes. Here we use graphical ‘icons’ to represent the patterns of up/down and no response and two alternative displays, the Gene-plot and a grid layout to provide rapid overall summaries of the gene expression patterns.
منابع مشابه
SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملThe False Discovery Rate in Simultaneous Fisher and Adjusted Permutation Hypothesis Testing on Microarray Data
Background and Objectives: In recent years, new technologies have led to produce a large amount of data and in the field of biology, microarray technology has also dramatically developed. Meanwhile, the Fisher test is used to compare the control group with two or more experimental groups and also to detect the differentially expressed genes. In this study, the false discovery rate was investiga...
متن کاملIdentification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کاملPerspective: Microarray Technology, Seeing More Than Spots
The publication in the mid-1990s of a new molecular tool, the DNA microarray, has led to a revolution in the way scientists approach the investigation of gene expression and regulation. This technology has made its impact upon many basic scientific disciplines including cancer biology, developmental biology, toxicology, investigation of growth-factor and hormonal signaling, and the applied area...
متن کاملPerspective: microarray technology, seeing more than spots.
The publication in the mid-1990s of a new molecular tool, the DNA microarray, has led to a revolution in the way scientists approach the investigation of gene expression and regulation. This technology has made its impact upon many basic scientific disciplines including cancer biology, developmental biology, toxicology, investigation of growth-factor and hormonal signaling, and the applied area...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Integrative Bioinformatics
دوره 3 شماره
صفحات -
تاریخ انتشار 2006